Cohomology Theory in Birational Geometry

نویسنده

  • CHIN-LUNG WANG
چکیده

This is a continuation of [10], where it was shown that K-equivalent complex projective manifolds have the same Betti numbers by using the theory of p-adic integrals and Deligne’s solution to the Weil conjecture. The aim of this note is to show that with a little more book-keeping work, namely by applying Faltings’ p-adic Hodge Theory, our p-adic method also leads to the equivalence of Hodge numbers – a result which was previously known by using motivic integration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Invariant Theory and Birational Geometry

In this paper we will survey some recent developments in the last decade or so on variation of Geometric Invariant Theory and its applications to Birational Geometry such as the weighted Weak Factorization Theorems of nonsingular projective varieties and more generally projective varieties with finite quotient singularities. Along the way, we will also mention some progresses on birational geom...

متن کامل

Recent Results in Higher-Dimensional Birational Geometry

This note surveys some recent results on higher-dimensional birational geometry, summarising the views expressed at the conference held at MSRI in November 1992. The topics reviewed include semistable flips, birational theory of Mori fiber spaces, the logarithmic abundance theorem, and effective base point freeness.

متن کامل

Euler and algebraic geometry

Euler’s work on elliptic integrals is a milestone in the history of algebraic geometry. The founders of calculus understood that some algebraic functions could be integrated using elementary functions (logarithms and inverse trigonometric functions). Euler realized that integrating other algebraic functions leads to genuinely different functions, elliptic integrals. These functions are not some...

متن کامل

Galois Theory and Projective Geometry

We explore connections between birational anabelian geometry and abstract projective geometry. One of the applications is a proof of a version of the birational section conjecture. Invited paper for the special volume of Communications on Pure and Applied Mathematics for 75th Anniversary of the Courant Institute

متن کامل

The Du Val singularities A n , D n , E 6 , E 7 ,

Du Val singularities have been studied since antiquity, and there are any number of ways of characterising them (compare Durfee [D]). They appear throughout the classification of surfaces, and in many other areas of geometry, algebraic geometry, singularity theory and group theory. For my present purpose, they make a wonderful introduction to many of the techniques and calculations of surface t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004